

Which of the following represents the area of the shaded region in the figure above?

(A)
$$\int_{0}^{d} f(y) dy$$

(B)
$$\int_{a}^{b} \left(d - f(x) \right) dx$$

(C)
$$f'(b)-f'(a)$$

(A)
$$\int_{c}^{d} f(y)dy$$
 (B)
$$\int_{a}^{b} (d-f(x))dx$$
 (C)
$$f'(b)-f'(a)$$
 (D)
$$(b-a)[f(b)-f(a)]$$
 (E)
$$(d-c)[f(b)-f(a)]$$

(E)
$$(d-c)[f(b)-f(a)]$$

2. If $x^3 + 3xy + 2y^3 = 17$, then in terms of x and y, $\frac{dy}{dx} =$

(A)
$$-\frac{x^2+y}{x+2y^2}$$

(B)
$$-\frac{x^2+y}{x+y^2}$$

$$(C) - \frac{x^2 + y}{x + 2y}$$

(D)
$$-\frac{x^2+y}{2y^2}$$

(A)
$$-\frac{x^2+y}{x+2y^2}$$
 (B) $-\frac{x^2+y}{x+y^2}$ (C) $-\frac{x^2+y}{x+2y}$ (D) $-\frac{x^2+y}{2y^2}$ (E) $-\frac{x^2}{1+2y^2}$

3. $\int \frac{3x^2}{\sqrt{x^3+1}} dx =$ (A) $2\sqrt{x^3+1}+C$ (B) $\frac{3}{2}\sqrt{x^3+1}+C$ (C) $\sqrt{x^3+1}+C$ (D) $\ln\sqrt{x^3+1}+C$ (E) $\ln(x^3+1)+C$

(B)
$$\frac{3}{2}\sqrt{x^3+1}+C$$

(C)
$$\sqrt{x^3 + 1} + C$$

(D)
$$\ln \sqrt{x^3 + 1} + C$$

(E)
$$\ln\left(x^3+1\right)+C$$

- For what value of x does the function $f(x) = (x-2)(x-3)^2$ have a relative maximum? (A) -3 (B) $-\frac{7}{3}$ (C) $-\frac{5}{2}$ (D) $\frac{7}{3}$ (E) $\frac{5}{2}$

- 5. If $f(x) = \sin\left(\frac{x}{2}\right)$, then there exists a number c in the interval $\frac{\pi}{2} < x < \frac{3\pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be c?
 - (A) $\frac{2\pi}{3}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{6}$ (D) π (E) $\frac{3\pi}{2}$

6. If $f(x) = (x-1)^2 \sin x$, then f'(0) =(A) -2 (B) -1 (C) 0(D) 1 (E) 2

- The acceleration of a particle moving along the x-axis at time t is given by a(t) = 6t 2. If the velocity is 25 when t=3 and the position is 10 when t=1, then the position x(t)=
 - (A) $9t^2 + 1$

- (B) $3t^2 2t + 4$ (C) $t^3 t^2 + 4t + 6$ (D) $t^3 t^2 + 9t 20$ (E) $36t^3 4t^2 77t + 55$

- 8. $\frac{d}{dx} \int_{0}^{x} \cos(2\pi u) du$ is
- $dx \frac{1}{0}$ (A) 0 (B) $\frac{1}{2\pi} \sin x$ (C) $\frac{1}{2\pi} \cos(2\pi x)$ (D) $\cos(2\pi x)$ (E) $2\pi \cos(2\pi x)$

- The graph of the function f is shown above for $0 \le x \le 3$. Of the following, which has the least value?
 - $(A) \int f(x) dx$
 - (B) Left Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length.

 - (C) Right Riemann sum approximation of $\int_{1}^{3} f(x)dx$ with 4 subintervals of equal length.

 (D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x)dx$ with 4 subintervals of equal length.
 - (E) Trapezoidal sum approximation of $\int_{1}^{3} f(x)dx$ with 4 subintervals of equal length.
- 10. What is the minimum value of $f(x) = x \ln x$?

- (A) -e (B) -1 (C) $-\frac{1}{e}$ (D) 0 (E) f(x) has no minimum value.

The graph of the function f, consisting of three line segments, is shown above. Let

$$g(x) = \int_{1}^{x} f(t) dt.$$

(a) Compute g(4) and g(-2).

(b) Find the instantaneous rate of change of g, with respect to x, at x = 1.

(c) Find the absolute minimum value of g on the closed interval [-2,4]. Justify your answer.

(d) The second derivative of g is not defined at x = 1 and x = 2. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.

(a) Find the slope of the graph of f at the point where x = 1.

(b) Write an equation for the line tangent to the graph of f at x=1, and use it to approximated f(1.2).

(c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.

(d) Use your solution from part (c) to find f(1.2).